
Symmetric Computing

Jerome Vienne

Texas Advanced Computing Center

Symmetric Computing

Run MPI tasks on both MIC and host

• Also called “heterogeneous computing”

• Two executables are required:

– CPU

– MIC

• Currently only works with Intel MPI

• MVAPICH2 support coming soon

Definition of a Node

A “node” contains a host component and a MIC

component

• Host – refers to the Sandy Bridge component

• MIC – refers to one or two Intel Xeon Phi co-

processor cards

NODE
Host

2x Intel 2.7 GHz E5-2680

16 cores

MIC

1-2 Intel Xeon PHI SE10P

61 cores / 244 HW threads

Environment variables for MIC

By default, environment variables are “inherited” by all

MPI tasks

Since the MIC has a different architecture, several

environment variables must be modified

• OMP_NUM_THREADS – # of threads on MIC

• LD_LIBRARY_PATH – must point to MIC libraries

• I_MPI_PIN_MODE – controls the placement of tasks

• KMP_AFFINITY – controls thread binding

mpiexec.hydra \

 –n 16 –host localhost ./host.exe \

 –env OMP_NUM_THREADS 30 \

 –env LD_LIBRARY_PATH $MIC_LD_LIBRARY_PATH \

 –env I_MPI_PIN_MODE mpd \

 –env KMP_AFFINITY balanced \

 –n 4 –host mic0 ./mic.exe

Symmetric run on 1 Node
16 tasks on host

4 tasks on

mic0
Environment variables for MIC tasks

Steps to create a symmetric run

1. Compile a host executable and a MIC

executable:

– mpicc –openmp –o my_exe.cpu my_code.c

– mpicc –openmp –mmic –o my_exe.mic my_code.c

2. Determine the appropriate number of tasks and

threads for both MIC and host:

– 16 tasks/host – 1 thread/MPI task

– 4 tasks/MIC – 30 threads/MPI task

Steps to create a symmetric run

3. Create a batch script to distribute the job
#!/bin/bash

#--

symmetric.slurm

Generic symmetric script – MPI + OpenMP

#--

#SBATCH –J symmetric #Job name

#SBATCH -o symmetric.%j.out #stdout; %j expands to jobid

#SBATCH –e symmetric.%j.err #stderr; skip to combine

#SBATCH –p development #queue

#SBATCH –N 2 #Number of nodes

#SBATCH –n 32 #Total number of MPI tasks

#SBATCH –t 00:30:00 #max time

#SBATCH –A TG-01234 #necessary if multiple projects

export MIC_PPN=4

export MIC_OMP_NUM_THREADS=30

ibrun.symm –m ./my_exe.mic –c ./my_exe.cpu

Steps to create a symmetric run

1. Compile a host executable and a MIC

executable

2. Determine the appropriate number of tasks and

threads for both MIC and host

3. Create the batch script

4. Submit the batch script

– sbatch symmetric.slurm

Symmetric launcher – ibrun.symm

Usage:
ibrun.symm –m ./<mic_executable> -c ./<cpu_executable>

• Analog of ibrun for symmetric execution

• # of MIC tasks and threads are controlled by env

variables

MIC_PPN=<# of MPI tasks/MIC card>

MIC_OMP_NUM_THREADS=<# of OMP threads/MIC MPI task>

MIC_MY_NSLOTS=<Total # of MIC MPI tasks>

Symmetric launcher

• # of host tasks determined by batch script

(same as regular ibrun)

• ibrun.symm does not support –o and –n flags

• Command line arguments may be passed within

quotes

ibrun.symm –m “./my_exe.mic args” –c “./my_exe.cpu args”

Symmetric launcher

• If the executables require redirection or

complicated command lines, a simple shell script

may be used:

ibrun.symm –m ./run_mic.sh –c run_cpu.sh

Note: The bash, csh, and tcsh shells are not available on MIC. So, the
MIC script must begin with “#!/bin/sh”

run_mic.sh run_cpu.sh

#!/bin/sh

a.out.mic <args> < inputfile

#!/bin/bash

a.out.host <args> < inputfile

Symmetric Launcher Example

…

#SBATCH –N 4 –n 32

export OMP_NUM_THREADS=2

export MIC_OMP_NUM_THREADS=60

export MIC_PPN=2

The MPI tasks will be allocated in consecutive order by node (CPU
tasks first, then MIC tasks). For example, the task allocation described
by the above script snippet will be:

NODE 1 8 host tasks (0-7) 2 MIC tasks (8-9)

NODE 2 8 host tasks (10-17) 2 MIC tasks (18-19)

NODE 3 8 host tasks (20-27) 2 MIC tasks (28-29)

NODE 4 8 host tasks (30-37) 2 MIC tasks (38-39)

Task Binding

When using IMPI, process binding may be

controlled with the following environment variable:

• I_MPI_PIN_MODE=<pinmode>

I_MPI_PIN_MODE=mpd (default for ibrun.symm)

mpd mpd daemon pins MPI processes at startup

(Best performance for MIC)

pm Hydra launcher pins MPI processes at startup

(Doesn’t appear to work on MIC)

lib MPI library pins processes BUT this does not

guarantee colocation of CPU and memory

(Default)

Task Binding

You can also lay out tasks across the local cores

• Explicitly: I_MPI_PIN_PROCESSOR_LIST=<proclist>

– export I_MPI_PIN_PROCESSOR_LIST=1-7,9-15

• Grouped: I_MPI_PIN_PROCESSOR_LIST=<map>

bunch The processes are mapped as closely as possible on the

socket

scatter The processes are mapped as remotely as possible to

avoid sharing common resources: caches, cores

spread The processes are mapped consecutively with the

possibility to not share common resources

Task Binding

Be careful when using MIC and host

• MIC – 244 H/W threads and 1 socket

• Host – 16 cores and 2 sockets

To set I_MPI_PROCESSOR_LIST for MIC simply

use the MIC prefix, e.g.

export MIC_I_MPI_PROCESSOR_LIST=1,61,121,181

6 74 5

Thread placement may be controlled with the

following environment variable

• KMP_AFFINITY=<type>

Thread Placement

compact pack threads close to each other

scatter Round-Robin threads to cores

balanced keep OMP thread ids consecutive

(MIC only)

explicit use the proclist modifier to pin

threads

none does not pin threads

0 1 2 3 4 5 6 7
compact

0 4 1 5 3 6 2 7
scatter

0 1 2 3
balanced

Balance

• How to balance the code?

Sandy Bridge Xeon Phi

Memory 32 GB 8 GB

Cores 16 61

Clock Speed 2.7 GHz 1.1 GHz

Memory

Bandwidth

51.2 GB/s(x2) 352 GB/s

Vector Length 4 DP words 8 DP words

Balance

Example: Memory balance

Balance memory use and performance by using a

different # of tasks/threads on host and MIC

Host

16 tasks/1 thread/task

2GB/task

Xeon PHI

4 tasks/60 threads/task

2GB/task

Balance

Example: Performance balance

Balance performance by tuning the # of tasks and

threads on host and MIC

Host

16 tasks/1 thread/task

2GB/task

Xeon PHI

4 tasks/30 threads/task

2GB/task

MPI with Offload Sections

ADVANTAGES

• Offload Sections may easily be added to

MPI/OpenMP codes with directives

• Intel compiler will automatically detect and

compile offloaded sections

CAVEATS

• However, there may be no MPI calls within

offload sections

• Each host task will spawn an offload section

Advices

• Don’t use purely MPI code on MIC.

• Don’t use too much MPI tasks on MIC.

• Best performance with Hybrid code

(MPI+OpenMP).

• Try to reduce the number of inter-node

communications involving a MIC.

• Performance of MIC<->CPU or MIC<->MIC is

different than CPU<->CPU inside a node.

Performance overview

0

2000

4000

6000

8000

10000

12000

M
b

y
te

s
/s

e
c

Message size (Bytes)

IMB Pingpong Results

Intra-Socket Inter-Socket CPU<->MIC Intra-MIC

Exercises

• Exercise 1

– Run natively on the MIC using mpiexec.hydra

• Exercise 2

– Run in a symmetric mode using MIC and host

• Exercise 3

– Run an MPI code with offload

For more information:

www.tacc.utexas.edu

Jerome Vienne

viennej@tacc.utexas.edu

http://www.tacc.utexas.edu
http://www.facebook.com/tacc.utexas
http://twitter.com/TACC_Hedda
http://www.linkedin.com/company/229459
http://www.youtube.com/user/TACCutexas
http://www.tacc.utexas.edu/calendar/
http://www.tacc.utexas.edu
https://plus.google.com/u/0/117998677621567541132/posts

